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Abstract: Aiming at the problem of low coverage caused by the difficulty of obtaining the optimal deployment
position in existing commonly used distributed deployment algorithms, this paper proposes a three-dimensional
(3D) deployment algorithm for Unmanned Aerial Vehicles (UAV) based on potential game. Firstly, a local
mutually beneficial game model is designed, and proved the existence of exact potential games and Nash
equilibrium in this game model, and the Nash equilibrium solution corresponds to the maximum coverage.
Secondly, inspired by the idea of exploration, a solution method based on exploration-based automatic learning
machine was designed, and the maximum utility function value of multiple step sizes in the exploration direction
is used to update the action selection probability, ensuring the optimal deployment position in each decision cycle.
Simulation results show that the proposed distributed deployment algorithm has higher coverage than existing
commonly used methods.
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1. Introduction

1.1. Background

The flexibility and mobility of Unmanned Aerial Vehicle (UAV) have been widely concerned and studied for
future communication system 31, It can be used as an auxiliary means to expand and supplement the ground
communication network. Data collection over wireless sensor networks (WSNS) is considered one of the crucial
applications for unmanned aerial vehicles (UAVs) and has been extensively studied by researchers [l In
conventional approaches, wireless sensor nodes (SNs) positioned in various regions transmit their sensing data to
a fusion center using different power levels based on their respective distances from the fusion center.
Consequently, this variation in energy consumption rates among the sensor nodes can significantly limit the
lifetime of wireless sensor networks (WSNs) €1, To address the limited lifetime issue in WSNs caused by the
disparate energy consumption rates, alternative strategies have been explored. One approach involves employing
adaptive power control algorithms that dynamically adjust the transmit power of SNs based on their distance to
the fusion center. By optimizing the power levels, this technique aims to achieve a more balanced energy
distribution among the sensor nodes [/ 81 Another solution is to implement energy-efficient routing protocols
that consider both the energy levels of SNs and their proximity to the fusion center when selecting paths for data
transmission. This way, nodes with higher energy reserves can be strategically utilized to relay data from distant
SNs, thereby reducing overall energy consumption and extending network lifetime B} 10 Furthermore,
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advancements in harvesting ambient energy sources such as solar or wind power can be leveraged to recharge
sensor nodes. Integrating energy harvesting mechanisms into WSNs allows for prolonged operation without
relying solely on limited onboard battery capacities [** *2, By adopting these approaches and exploring novel
techniques, researchers aim to mitigate the energy imbalance issue in WSNs and enhance their longevity for
efficient data collection applications using UAVs [13] [4]

1.2. Prior Work

The previous research of UAV mainly focused on the level of control theory and methods. The threedimensional
deployment of unmanned aerial vehicles (UAVs) addresses a crucial challenge in UAV communication. By
enabling adjustable flight altitudes and mobility, it offers additional degrees of

freedom for effective deployment P51 However, this type of deployment also presents challenges related to
the deployment environment, user location and distribution, and the characteristics of the UAV communication
channel. These factors need to be carefully considered to achieve optimal deployment in the three-dimensional
space for UAVs 81, With the rapid development of UAV communication technology, there are more and more
researches on the communication control combine with flight control [, Compared with the traditional fixed
node communication on the ground, the mobility and flexibility of UAV can effectively improve the performance
of UAV communication system. Although the flexible deployment of UAVS, natural line-of-sight channels and
controllable trajectories have brought huge gains to the UAV communication network. However, for the data
collection task of ground mobile sensor nodes, the offline deployment algorithm cannot guarantee the coverage
and data collection volume of the UAV 2 to the ground sensor nodes in real time. Once the ground sensor nodes
leave the effective communication coverage area of the UAV, the correctly demodulated data cannot be collected.
Reference 2! proposes that the deployment based on the Grey Wolf algorithm can effectively maximize the
average throughput rate of ground users. Reference 22 uses particle swarm optimization to optimize coverage
and user communication and rate respectively. However, the traditional centralized optimization algorithm used
in these studies is not only computationally intensive, but also does not consider the real-time mobile ground
Sensor scene.

1.3. Contributions and Organization

This paper constructs a game theory model based on distribution, and proposes an automatic learning algorithm
based on exploration to solve the equilibrium solution. The main contents and contributions are as follows:

(1) According to the characteristics of UAV communication channel. Take the signal-to-noise ratio threshold
and the maximum number of users served by the UAV as the conditions for the ground sensor node to access the
UAV.

() The dynamic game model of UAV as a participant is designed and the game is decomposed into sub-
games at each time. At the same time, we designed the multi-dimensional discrete action space and the utility
function of each player. The utility function takes the number of users accessed by the UAV itself and the number
of users accessed by the neighbor UAV into account.

3) In each sub-game stage, in order to solve the limitations of actions in the discrete action space, we designed
the expected actions based on exploration.

2. System Model and Problem Formulation
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Considering that low-power sensor equipment is randomly scattered in the mission area, when the UAV group
flies to the mission area, the control signal is sent to the ground low-power sensor equipment to access the UAV
network for data reporting. It is specified that each low-power sensor device can only be connected to one UAV
and needs to meet the channel quality requirements at the same time.
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Figure 1: Changes in access sensors during local mutual benefit games.
2.1. Unmanned Data Acquisition Channel Model
The paper size must be set to A4 (210x297 mm). The margins must be set as the following:
UAV data collection channels are ground-air channels, which can be generally divided into LOS, NLOS and
multipath fading channels 3 41 Although there are many in-depth studies on UAV communication channels,
for example, considering the reflection of ground obstacles and roadside obstacles. Reference [25] designed a
three-dimensional channel model based on geometric methods. In the deployment coverage scenario of data
collection UAV studied in this paper, the LOS channel is mainly considered, and the power gain within the
coverage radius is defined as
B 0

h(d)™2 2 Q)

H+d
Where o is the power gain of per meter, H is the flight altitude of the UAV, d is the distance from the UAV
projection position to the ground sensor node, 0 < dd < ddmax , dmax 1S the maximum coverage radius of the UAV.
The maximum coverage radius is calculated based on the pitch angle and flight altitude of the UAV:

dmax = Htan (2)
Let the set of UAV groups defined as U={1,2 ---UU} , the set of ground sensors defined as
S={1,2 ---, §§} , and the mission area be set as a cube model Q = @pp = (xx, yy, zz)@PPddddddid < pp <
PPuuuwu€p, Where ppdddddddd is the lower boundary of the area and ppuwa is the upper boundary .We can set the
position of the UAV ppuvuvuvvu € Q the position of the ground sensor ppssss € Q. According to the number of
UAVs that meet the coverage requirements, set the rate rrmmmmadd to meet the minimum communication needs of
users. The available communication bandwidth for the UAV is B, and the bandwidth utilization efficiency is n.
Therefore, we can calculate the number of users that each UAV can serve as UUccddccceee = [WBB/1Tmin], Where
[-Jindicates rounding up. The approximate number of UAVSs required UU = [SS/UU ccddcceecc], based on the total
number of ground sensors can be determined at the same time. A sensor successfully access a UAV requires
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meeting communication quality requirements rr > rrmin, Where r is the communication rate of data reported by
the sensor.
0 psh(ds, u) [J

rs,u=nBslog2 [J1+ 2 0 3)

(] c (]
Where BBss = [BB/UU ccddcceece] 1S the maximum bandwidth that the sensor s-th can use, ppss is the transmission
power of the s-th sensor, h€ddss.€p is the channel gain between the s-th sensor and the u-th UAV, ddss,uu is the
distance between the s-th sensor and the u-th UAV. rrss« IS the instantaneous communication rate between the s-
th sensor and the w-th UAV, and oo? is the power of additive Gaussian white noise.
2.2. Deployment Problem Customization
As a three-dimensional deployment of UAV assisted data collection, we take the total number of sensors
successfully connected to the UAV as the optimization goal, which can be expressed as:

(P1): U S

st. . max Y > ACCeSSuxs
pllpU u=1s1 = pu=pinitu
,JUEU
U
> AccessUxS <U cover
u=1
S (4)
Y Accessuxs <1
s=1
01,ru,s >rmin
Access(u,s) =[] u
[10,0ther
pu€EQ,ueU Us Se
The variable ppy, --- , ppuu is the three-dimensional coordinate position of the UAV, and the indicator matrix

Accessuuxss representing the u-th row and s-th column sensors accessed to the UAV in the optimization target,
hereinafter referred to as the access matrix. The first constraint is the initial position constraint of the UAV. The
second constraint indicates that the number of sensors successful accessed to UAV needs to be less than or equal
to the maximum number of service users UUcovccee - The third constraint indicates that each sensor can only access
one UAV at most and cannot repeatedly access other UAV. The forth constraint is a communication requirement
to ensure the quality of sensor data transmission. The last constraint is a boundary constraint, and the UAV must
be within the mission area.

3. Three-Dimensional Deployment Algorithm
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3.1. Game Model
Game theory can be divided into two categories, namely cooperative games and non cooperative games according
to whether participants have reached a binding cooperation agreement. In general, the information interaction cost
of cooperative games is much greater than that of non cooperative games. The key issue in non cooperative game
research is how participants choose strategies and make choices that maximize their own benefits when their
interests or returns interact. The three elements of the game model are as follows:

O=0-5U,{puuelU {fuJueU (5)
1) Participant: U={1,2 ---UU?} represents a collection of all UAVs that perform data collection tasks.
(2) Strategy space: A = {aai, aa, -+, aavu} represents the action space selected by the display UAV. For
any uu € U, aawu represents the selected action of the u-th UAV, and for aawx € A, where A is a set of actions.
3) Utility function: In the UAV assisted data collection and deployment problem, the goal of each UAV is
to maximize its own utility function.
3.2. Utility Function Design
In traditional game models, game participants always make decisions based on their own interests, that means
participants only considering the maximum individual's utility function. However, in the optimization problem
P1, the number of sensors that each UAV can access is limited. When UAVs only consider maximizing their own
utility function, their decision-making will fall into a dead cycle, making it difficult to ensure global optimization.
In order to improve the performance of game models and be inspired by local mutually beneficial behavior in
nature, this chapter proposes a local mutually beneficial game based UAV deployment. The local mutually
beneficial behavior in nature refers to the fact that biological individuals consider other individuals of their
neighbors when making decisions 261, Therefore, the utility function in a locally mutually beneficial game is
defined as follows:

fu(au,adu )=gu (au,adu )+> gu’ (au’,adu’) (6)
u'€dy
Where JJuu is the neighbor UAV set of u-th UAVS, which defines the one hop reachable node in the UAV network
as the neighbor node. g guu€aauwu, aa;.€p is the number of sensors accessed by the u-th UAV, with a maximum
value of UUccddcccce , and its expression is as
[1Ucover ,> Access(u,s)> Ucover

D S

gu (au,aw )= (7)
1y Access(u,s),others
(s

Where Access(u, S) is the access indication of the s-th sensor to the u-th UAV, which generally follows the
constraints in question P1 in the game model. Therefore, when a UAV makes a motion decision at the next
moment, it not only considers itself, but also considers its neighbor users. This can prevent a UAV from falling
into a dead cycle when reaching its optimal capacity. Based on the above utility function, the local mutual benefit
game model can be expressed as:

(J1)=max fy (av,aw ),YueU (8)
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aueEA
Where A is the action set of UAV. Considering that the decision-making actions of UAV at each moment during
the deployment process are discrete. We can set fixed length movement values like A on each dimension, the
action space can be represented as:
1(0,0,0);(0,0,A);(0,A,0); 0
(] (]
1(0,A,A);(A,0,0);(A,0,A); 0
[(AA0);(AAA);(0,0,-A); [
[ [
~(0,~A,0);(0,—A,—A);(=A,0,0); O
A =00 (=A0, —A);( —A, =A0);(—A, —A, —A);=0 (9)
Y0 (A =AA)(AA-A) (A A A); -0
(A=A=A);(A=AA)(AA-A); O
(] (]
[1(A,0,—A);(A,—A,0);(0,A,—A); (1 00(0,~A,A);(—A,0,A);(—AA0); [0
There are 27 basic motion components in the motion space of UAV, including stationary motion. The UAV
selects an action to perform during each decision cycle to track sensors. In order to illustrate the mechanism of
local mutually beneficial games.
3.3. Nash Equilibrium Analysis
Then we can know that this game is an exact potential energy game. Alternatively, in precise potential energy
games, the amount of change in the utility function caused by any user unilaterally changing their strategy is the
same as the amount of change in the potential energy function. At the same time, the theorem that Nash
equilibrium is an exact potential energy game is as follows:
Theorem 1. A local mutual benefit game GG1 is an exact potential energy game with at least one pure strategy
Nash equilibrium solution. In addition, the optimal solution to the problem of maximizing the deployment and
access of UAV assisted data collection P1 is the pure strategy Nash equilibrium of the game.
Proof of Theorem 1. First, construct the following potential energy function:
¢(av,a-u) =% fuau,asu ) (10)
u
If any UAV changes its action selection from aa.w t0 aaw. , the amount of change in the user's utility function is
as follows:
o(au,a—u)-p(au’,a—u)
=> fu(au,au )'Z fu(as’,am)
u u
=fu(au,adu) > fu’ (au'+,aju’)
u'edu (11)
— fu(av,asu )— Y fu(aw,auur)
u'€dy
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=fu(au,aJu) fu(au’,aJu)—
=fu(au,a—u) fu(au’,a—u)—
Based on the above analysis, it can be seen that a unilateral change by any user results in an equal change in the
utility function and potential energy function of the UAV. Therefore we can make a conclusion that a local mutual
benefit game is an accurate potential energy game, and its potential energy function is the global number of user
accesses.

Accurate potential energy games have many unique properties as follows 271:

1) Any precise potential energy game has at least one pure strategic Nash equilibrium;

(2) The global or local optimal solution of the potential energy function is a Nash equilibrium.

3.4. Exploratory Based Stochastic Learning Automata

Firstly, we need to expand the game model from pure strategy to mixed strategy. Note that the mixed strategy
distribution vector of the u-th UAV during the i-th iteration is q(ii) = €qqu(ii), --- , qquu(ii) €.

Where qqu(ii) € A(Aw), A(Aw) represents the probability distribution set of the »-th UAV in the strategy space
AAAw , where qQuu(ii)=(qquut, -+ , qquun) 1S the probability vector for the »-th UAV to select actions, and M is
the number of actions in the action space. qquumm means the probability that the u-th UAV selects the m-th action.
Note Zwum(qq) the average utility function that the »-th UAV can obtain when it selects m-th channel(aaw. =
A(mm)) and other UAVs use a hybrid strategy,

h(g)=f(a,,A(m),a,,a)q umY ul O0u+l OOU [T kak (12)

ak,k#u k£u

Inspired by a distributed learning algorithm based on Stochastic Learning Automata (SLA) 28 291 which is
applied to study the random stability of social networks. In sparse data assisted data collection scenarios, the range
of sensor distribution is relatively wide, and limited by the maximum flight capacity of UAV, the maximum
movement distance in a decision cycle may not have any change in sensor coverage. Therefore, in this sparse
scenario, it is difficult for traditional algorithms to solve the Nash equilibrium solution. We redesigned the action
space of the game model, set a fixed length movement value A to indicate the movement direction of the UAV,
and set the maximum movement distance of the UAV ddmax In a decision-making cycle. Based on the above
theorem, after the UAV selects an action based on the action selection probability as the direction of movement
of the UAV on this side. In this direction, start exploring from the current position of the UAV, and set the
maximum exploration range

dg,. Therefore, we can search on a line segment 1, = (1 — A)p,, + AA(a,)dé.. » Where 2 is the search accuracy. We
calculate the utility function value at each discrete point on the line segment and take the coordinates at the
maximum position pp™®. . The distance d between pp™®u. and ppu is calculated as the UAV will move in the
direction during the next decision cycle. If dd > ddmax then we set dd = ddmax .
Algorithm 1 [Exploratory Based Stochastic Learning Automata (SLA)

1: Initialization: Set the iteration number k=0 so that the initial action
selection

probability vector for all UAVS is g,,,(i) :%,Vu em={1,,M}.

Have
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each UAV uu € U randomly select a channel aaw(0) from its
optional action set
qq(ii) with equal probability

Z: while Vqquumm(ii) < 0.99 do

All UAVs broadcast their own status information through the WIFI
module, including position, speed, yaw angle, etc

4. Take other UAVs that can receive information as neighbor UAVs
and record them in the neighbor node set J/uu

Each UAV selects actions based on channel selection probability
Search on the line segment 1, = (1 —A)p, + AA(a,)dSa, and record
the maximum local mutually beneficial utility function fm#(q,,a,,
and the

movement of the UAV ddu.A€@aa.w.(ii)€p in the next decision
cycle

7 All UAVs update the action selection probability according to the
following rules:

8. qquumm(ii + 1) = qquumm(ii) + bb f f @uu(ii)[1 — quumm(ii)], A(mm)
= aauu(ii)

9: qQquumm(ii + 1) = C[C[uumm(ll)-bbff@uu(ll)QQuumm(ll), A(mm) #
aauu(ii)A

10: . u (D)

]g(l) - UCOVCCC—I_quE]u Ucovccc

11: end while

3.5. Dynamic Deployment Algorithm
Based on the precise potential energy game for each decision cycle described above, we further design a UAV
deployment algorithm in a dynamic environment. The specific algorithm is as algorithm 2:

“

Algorithm 2 |Dynamic deployment algorithm
1: Initialization: Set the deployment area @ and initial location of the
UAV ppmmddmmii and set the decision time t.
Z: while 71 < 0.9 do
3: - - -
Call algorithm 2 to obtain the current optimal movement strategy of
the UAV
dduwA@aau(tt)€ and update the location of each UAV.
4 ppu(tt + 1) = ppuu(tt) + dduuA@Qaawu(tt) €
5: Calculate global coverage:
6: > uu Y ss AccessUUXSS
nn =
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SS

7 end while

4. Numerical Simulations
4.1. Simulation Environments

In this section, we provide numerical simulation results to evaluate the effectiveness of proposed algorithms. The

simulation parameter settings are shown in the Table 1.
Table 1: UAV deployment simulation parameters.

Symbol Parameter Value

U Number of drones 6

U Number of drone connected users 17

cover

@ Pitch angle nm/3

S Number of sensors 100

PDss Sensor transmission power 2000 mW
B Communication channel bandwidth 11 MHz
nno Noise power spectral density -165 dBm/Hz
a Path loss exponent 2

b Algorithm learning rate 0.9

A& ax Maximum exploration distance 250 m

4.2. Simulation Results

) (e) (f)

Figure 2: Convergence graph of hybrid strategy iteration.

The following figure shows the convergence of the action selection probabilities of six UAVSs in their respective
action sets. As can be seen from Figure 2, after approximately 40 iterations, the optimal action probability for all
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UAV hybrid strategy sets converges to 1. At the same time, the action probability curve in the figure also covers
the expectation of the automatic learning machine algorithm with the increase of the number of iterations. When
the utility brought by a certain action increases, the probability of its selection increases.

Fig. 3 shows the utility function values of UAVs in a decision cycle. The utility function value is the sum of the
number of users of the UAV and the number of neighbors. It can be seen from the figure that when the utility
values converge to about 25 iterations, this corresponds to the convergence of mixed strategy probabilities, that
is, the proposed game model reaches Nash equilibrium. It should be noted that the Nash equilibrium solution
obtained by the exploration-based automatic learning machine is the action direction, and the actual deployment
position of the autonomous navigation UAV needs to be updated under the constraint of the motion principle and
the maximum motion capacity in each deployment decision cycle.

35 T l

utility function value

10 —— UAV1
—6— UAV2

UAV3
51 —e— UAV4
! —&— UAVS

UAVE

0 5 10 15 20 25 30 35 40
iterations

Figure 3: Iterative Convergence Graph of Utility Function Values.

Fig. 4 shows a schematic diagram of the coverage of the real-time deployment of UAVs on a twodimensional
plan. It can be intuitively seen that UAVs are almost evenly distributed in the task area and the users covered are
within their maximum number of service users. If the position of the ground sensor changes, the autonomous
navigation UAV will also adjust the optimal deployment position based on the real-time perception of the ground
sensor information.
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Figure 4: Schematic diagram of drone 2D deployment coverage.

Fig. 5 shows a three-dimensional diagram of the moving waypoints of the real-time deployment of UAVs within
each decision cycle. It can be intuitively seen that the UAV is initially placed in the central position of the mission
area, obtains the motion direction through the exploration-based automatic learning machine within each
deployment decision cycle, and gradually moves to 6 spatially equal directions according to the actual motion
ability, which are determined by the Nash equilibrium solution within each deployment cycle. Because the path
point selection in each decision space is obtained according to the Nash equilibrium solution of the potential
energy game, even if the sensor is moving in real time, the deployment algorithm can still find the Nash
equilibrium solution in each decision cycle. Through continuous iteration, as long as the moving ability of the
sensor is weaker than that of the UAV, a stable coverage rate can be achieved. As can be seen from Fig. 5, after
several deployment cycles, the autonomous navigation UAV moves to a position that meets the coverage
requirements.

3D deployment motion trajectories

>— UAV2
UAV3

‘ UAV4
g UAVS
|—+—uave

‘ “<— UAV1

~ 6000

" 4000

" 2000

4000 MRS
2000 T 4 x-axis

y-axis ° -2000

Figure 5: Schematic diagram of drone 3D deployment coverage.

The comparison diagram between the algorithm proposed in this paper and the other algorithm is shown in Fig.
6. After 70 decision cycles, the method proposed in this chapter using the exploratory SLA algorithm and local
mutually beneficial utility function can cover more than 90 users, while non exploratory SLA and particle swarm
optimization algorithms can cover less than 90 users, while non cooperative SLA algorithms can cover less than
80 users. Through comparison, it can be seen that the proposed 3D deployment algorithm in this paper has better
performance.

The comparison diagram between the algorithm proposed in this paper and the other algorithm is shown in Fig.
6. After 70 decision cycles, the method proposed in this chapter using the exploratory SLA algorithm and local
mutually beneficial utility function can cover more than 90 users, while nonexploratory SLA and particle swarm
optimization algorithms can cover less than 90 users, while non cooperative SLA algorithms can cover less than
80 users. Through comparison, it can be seen that the proposed 3D deployment algorithm in this paper has better
performance.
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—— PSO Algorithm |
—— SLA Algorithm (
10 | —— Exploratory SLA Algorithm (Local Mutual Benefit){
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Figure 6: Coverage comparison of different algorithm.
5. Conclusions
In this paper, we proposed a three-dimensional self-organized deployment method for UAVs based on dynamic
game models to maximize the service capabilities of UAVS, and we also designed a utility function satisfying
potential game conditions. Inspired by SLA, a three-dimensional deployment algorithm for UAVs based on SLA
is designed to solve Nash equilibrium. However, we used six UAVSs in this simulation, and the ground user was
static. If we want to cover dynamic users, how to solve the Nash equilibrium in unknown dynamic environments
can be the main difficulties.
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