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Abstract: Penrose tiling is an example of the two-dimensional quasicrystal tessellation model, which British
mathematician Roger Penrose first proposed in 1974. In this paper, we investigate the construction rules of the
P3 Penrose tiling in the two-dimensional quasicrystal theoretical model. We successfully generate the first seven
generations of complete P3 Penrose tiling using the self-similar transformation method.
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1. Introduction

Quasicrystals were discovered in 1982 and reported for the first time in 1984. Daniel Shechtman, an Israeli
physicist, discovered it. The structures of quasicrystals have a quasi-periodic translational sequence and can have
rotational symmetry axes of 5, 8, 10, or 12, which are impossible in crystals and non-crystals[1].

The predominant structural models of quasicrystals are one-dimensional, two-dimensional, and threedimensional
models. The one-dimensional model primarily refers to the quasi-periodic Fibonacci sequence, which is highly
developed from an experimental and theoretical standpoint. Two primary theoretical models for two-dimensional
quasicrystals are the mosaic model and the overlay model. However, this paper only discusses the Penrose tiling
of the mosaic model, a typical mosaic model for five-times symmetric quasicrystal structures[2].

The piecework models are formed by the tessellation of two or more pieced blocks, with the construction rules
requiring that there be no overlap or coverage between the pieced blocks to form a two-dimensional quasi-periodic
structure with no gaps [3]. This model is represented by the Penrose tiling, which possesses the long-range
orderliness of crystal punctures, lacks translational symmetry, and is a widely studied quasicrystal model with
fivefold symmetry [4].

2. P3 Penrose tiling construction rules

Penrose tiling is representative of the two-dimensional quasicrystal tessellation model, which is a typical non-
periodic tiling, and there are many different manifestations of this model. The most studied manifestation is the
thick and thin rhombus model, also known as P3 Penrose tiling, and the other two models are P1 and P2 Penrose
tiling, respectively. The P1 Penrose tiling consists of four types of pieces: the pentagon [5], the pentagram, the
"boat,” and the 36-degree skinny rhombus, whereas the P2 Penrose tiling consists of the "kite" and the
"dart."(Figure 1).
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Figure 1: A thick rhombus (a) and a thin rhombus (b), which can be used to construct P3 Penrose tiling.

As shown in Figure 2-1, the P3 Penrose tiling consists of a thick rhombus with an acute angle of 72°and a thin
rhombus with an acute angle of 36°. For these two types of rhombuses to form a P3 Penrose tiling, they must
adhere to specific matching rules. Single and double arrows are drawn on the sides of the rhombuses, adjacent
rhombuses have identical arrows on their common sides, and the number and direction of the rhombuses are
identical. As shown in Figure 2, this matching rule can result in a P3 Penrose tiling that is both non-periodic and
gap-free [6].

Figure 2: P3 Penrose tiling formed with thick and thin rhombuses, following the matching rule.

Matching, self-similar transformation, generalized pairwise, and high-dimensional projection methods are the
most popular techniques for generating P3 Penrose tiling. This paper presents the theory and programming
implementation of the self-similar transformation method used to generate P3 Penrose tiling [7].

3. Construction of P3 Penrose tiling by self-similar transformation method

The self-similar transformation method, whose generation mechanism is based on the self-similarity of Penrose
tiling, generates a tiling that is self-similar to the tiling prior to the transformation after some alternative
transformation. Specifically, beginning with a particular small tiling, after a substitution transformation, the
resulting tiling is self-similar to the one before the transformation. Then the transformed tiling is enlarged to its
original size. Repeating the two processes described above can generate a quasi-periodic tiling of arbitrary size.
Multiple generations of this tiling can be generated by repeating the substitution method [8].

If each thick rhombus or thin rhombus in the Penrose tiling is If each thick or thin rhombus in the Penrose tiling
is replaced according to the rules illustrated in Figure 3, the resulting graph is still a Penrose tiling [5]. The
transformed tiling is self-similar to that before transformation, except that the side length
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of the rhombus is shortened to 1/t of the original length, wheret = % (z is the golden mean).
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Figure 3: Construction rules for P3 Penrose tiling (starting with a thick rhombus and a thin rhombus,
respectively).

Using this substitution rule, one can begin with a diamond-shaped tiling and replace it with a smaller diamond of
the scale of the original puzzle%, then enlarge the new puzzle ; by a factor of two and repeat the process (shrink

and expand) indefinitely to generate any generation of Penrose tiling. Thus, the method is also known as the
shrink-expand method [9].

To generate the P3 Penrose tiling for previous generations, you must first develop a generation algorithm. The
first step is drawing a thick rhombus (or a thin rhombus) and determining the center position and orientation of
the first-generation rhombus structure based on the geometric relationship [10].

Then, based on the geometric relationship, we can investigate the relative position of the secondgeneration
structure relative to the center of the first-generation rhombus and the relative bias angle of the second-generation
structure relative to the orientation of the first-generation rhombus, following the self-similar transformation rule
in the previous-generation descendant relationship, to draw the secondgeneration tiling[11].

To implement the expansion process for the second-generation structure, the edge length of the rhombus structure
is enlarged ¢ times (¢ is the golden ratio, approximately 1.618). Through the selfsimilar transformation rule, the
center position and orientation of the third-generation structure are then determined based on the center position
and orientation of each rhombus in the second-generation structure (the relative position of the third generation
relative to the center of the second-generation rhombus, the third generation relative to the orientation of the
second-generation rhombus, and so on)[12].

It is important to note that when drawing a figure, the rule of symmetry and the coordinates of the symmetry point
can be considered. For instance, if you need to locate a point p3 in the tiling (assume p3 is a point of symmetry
about the line connected by pl and p2), you can first locate the symmetry point about the line connected by pl
and p2 to determine the center position, and then locate the coordinates of point p3[13]. Before executing the
preceding procedure, we must define the expressions of two variables. Then, assuming that the two variables are
set as xx and yy, we can use the formula for midpoint coordinates to determine the coordinate position of point
p3 [14].

If you need to determine the coordinates of the symmetry point (assuming the coordinates are [XX, YY]), you
can begin by creating a splicing matrix (assuming the splicing matrix is [XC, YC]) and assigning values to [XC,
YC]. The variables to be determined are X and Y [15].
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Using the vertical foot coordinates, the results of XC2 and YC2 can be expressed as floating-point numbers. First,
define the expressions of the variables XX and Y'Y, then use the midpoint coordinate formula to determine the
symmetry point's coordinates [16].

Figures 4 and Figures 5 depict the first seven generations of P3 Penrose tiling obtained by the authors of this study

utilizing MATLAB software, beginning with a thin rhombus (a) and a thick rhombus (b),
respectively, after six self-similar transformations[17].

Figure 4: The first seven generations of the generated P3 Penrose tiling, starting with a thin rhombus

(a).

Figure 5: The first seven generations of the generated P3 Penrose tiling, starting with a thick rhombus

(b).

According to theory, the self-similar transformation method can generate arbitrary generations of P3 Penrose
tiling. The generation of arbitrary generation tiling cannot be fully realized in practice, however, due to the limited
memory space of computers and the problem of objective programming errors. Moreover, if tiling of the eighth
generation and beyond must be generated, the computer will generate more time and memory, which is
challenging to implement [18].

4, Conclusion

This paper begins with the matching rules of P3 Penrose tiling. Then, it investigates the construction principle of
the self-similar transformation method to generate Penrose tiling, designs the algorithm, and programs the
construction of the first seven generations of the graph of P3 Penrose tiling using MATLAB software. The
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algorithm for generation can be broken down into the following steps: A thick or thin rhombus is initially drawn
to determine the center position and orientation of the rhombus of the first generation. Secondly, the second-
generation tiling is drawn by determining the relative position of the second-generation structure concerning the
center of the first-generation rhombus and the relative deflection angle of the second-generation structure
concerning the direction of the first-generation rhombus based on the geometric relationship. Third, to realize the
expansion process, the edge length of the rhombus in the second generation structure is enlarged by t times (t is
the golden ratio, approximately 1.618) Then[19], based on the center position and orientation of each rhombus in
the second-generation structure, the self-similar transformation rule is used to determine the center position and
orientation of the third-generation structure (the relative position of the third generation relative to the center of
the second-generation rhombus and the relative deflection angle of the third generation relative to the orientation
of the second-generation rhombus, and so on) to generate the P3 Penrose tiling for previous generations. If the
algorithm designed by the authors of this paper is utilized to continue programming the computation, it is possible
to generate the structure of the eighth generation and beyond. However, considering the computer's limited
memory space and much time spent, it is challenging to implement the structure of the eighth generation and
beyond in practice. Therefore, this paper only demonstrates the construction of the P3 Penrose tiling for the first
seven generations. The P3 Penrose tiling is the model of tessellation that has been the subject of the most research.
By examining the matching rules and constructing two-dimensional quasicrystals using the self-similar
transformation method, we can gain a deeper understanding of the formation mechanism. Therefore, physical
properties such as mechanics, thermodynamics, electricity, magnetism, and optics should be studied further.
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